什么是卷积神经网络(CNN)?定义、工作原理和主要应用 – AI百科知识

AI百科 2024-09-03 15:25:45 AI365导航网

什么是卷积神经网络?

卷积神经网络(Convolutional Neural Network,CNN)是一类主要用于计算机视觉领域的深度学习算法,它们在各个领域都有应用,包括图像和视频识别、自然语言处理,甚至是玩游戏。CNN已经彻底改变了计算机视觉领域,在物体检测、图像分割和面部识别等任务中提供最先进的性能。在这篇文章中,我们将简单介绍CNN的内部工作原理、其架构以及在现实世界中的应用。

什么是卷积神经网络(CNN)?定义、工作原理和主要应用 – AI百科知识
卷积神经网络的原理

要理解CNN,必须熟悉神经网络的基本概念。神经网络是一个受人脑结构和功能启发的计算模型,它由相互连接的人工神经元组成。这些神经元被组织成层,每个神经元接收来自前几层的输入,并将输出发送到后续层。

CNN是一种专门的神经网络类型,专注于处理具有网格状结构的数据,如图像。CNN的主要构成是卷积层,其目的是自动和自适应地从输入数据中学习空间层次的特征。

卷积层

卷积层(Convolutional Layers)是CNN的核心部分。它执行卷积运算,这是一种数学运算,将两个函数作为输入并产生第三个函数作为输出。在CNN的背景下,输入函数通常是一个图像和一个过滤器(也被称为内核)。卷积操作用于分析输入图像中的局部模式,方法是在图像上滑动滤波器,计算滤波器和它所覆盖的图像区域之间的点积。

这个过程产生了一个特征图,它是输入图像的一个表示,突出了过滤器检测到的特定特征存在的区域。通过在卷积层中使用多个过滤器,CNN可以学会识别输入图像中的不同特征。

典型的CNN结构 By Aphex34 – Own work, CC BY-SA 4.0

© 版权声明

相关文章